CROSSWALK

Praxis 5652 Computer Science Competencies

I. Impacts of Computing

1A1. Understand computing as a way of expressing creativity, solving problems, enabling communication, and fostering innovation in a variety of fields and careers

1A2. Know the obstacles to equal access to computing among different groups and the impact of those obstacles

1A3. Understand beneficial and harmful effects of computing innovations and the trade-offs between them

1B1. Know different methods of protecting intellectual property rights and the trade-offs between them in a variety of contexts (e.g., Creative Commons, open source, copyright)

1B2. Understand ethical and unethical computing practices and their social, economic, and cultural implications

Foundations of Computer Science - Praxis Prep

The Foundations of Computer Science - Praxis Prep course addresses all 196 competencies in the 5 main units and 56 sub-topics of the Praxis 5652 list.

In the left column are the Praxis elements, the right the corresponding Foundations units.

In several instances, liberties were taken to reorder and/or combine topics into a more cohesive and logically sequential learning unit. For instance, Module 3 is divided into three parts due to the volume of material, and several topics were grouped together in a modified sequence to better provide a learning sequence.

Module 1 - Impacts of Computing

1A1: Creativity and Innovation in Computing

1A2: Obstacles to Equal Access

1A3: Computing Innovations - Benefits and Tradeoffs

1B1: Intellectual Property Issues

1B2: Ethics of Computing
1B3. Know privacy and security issues regarding the acquisition, use, and disclosure of information in a digital world

II. Algorithms and Computational Thinking

2A1. Understand abstraction as a foundation of computer science

2A2. Know how to use pattern recognition, problem decomposition, and abstraction to develop an algorithm

2A3. Understand number base conversion and binary, decimal, and hexadecimal number systems

2A4. Understand how to develop and analyze algorithms expressed in multiple formats (e.g., natural language, flowcharts, pseudocode)

2B1. Be familiar with the limitations of computing in terms of time, space, and solvability as well as with the use of heuristic solutions that can address these limitations

2B2. Understand searching and sorting algorithms; can analyze sorting algorithms for correctness and can analyze searching algorithms for correctness and efficiency

2B3. Understand simple recursive algorithms (e.g., n factorial, sum of first n integers)

2B4. Be familiar with the use of randomization in computing

III. Programming

3A1. Understand how to write and modify computer programs in a text-based programming language

3A2. Understand how to analyze computer programs in terms of correctness

3A3. Know the concepts of extensibility, modifiability, and reusability

3A4. Understand the three basic constructs used in programming: sequence, selection, and iteration
| A5 | Understand how to use standard operators (i.e., assignment, arithmetic, relational, logical) and operator precedence to write programs | 3A5: Standard Operators |
| A6 | Understand how to use variables and a variety of data types | 3A6: Part One - Data Types and Variables
3A6: Part Two - Procedures, Parameters, Arrays, Lists, Data Structures |
B1	Understand how to write and call procedures with parameters and return values	3B1: Procedures and Parameters
B2	Know the concepts of event-driven programs that respond to external events (e.g., sensors, messages, clicks)	3B2: Event-Driven Programming
B3	Be familiar with usability and user experience (e.g., ease of use and accessibility)	3A1, A2, A4, B3, B5, B6: Programming Topics
B4	Be familiar with dictionaries/maps, stacks, and queues	3B4: Stacks, Queues and Maps/Dictionaries
B5	Understand how to use debugging techniques and appropriate test cases	3A1, A2, A4, B3, B5, B6: Programming Topics
B6	Be familiar with characteristics of well-documented computer programs that are usable, readable, and modular	3A1, A2, A4, B3, B5, B6: Programming Topics
B7	Be familiar with techniques to obtain and use feedback to produce high-quality code (e.g., code reviews, peer feedback, end user feedback)	3B7: Feedback
B8	Know how to use libraries and APIs	3B8: Using Libraries and APIs
B9	Understand programming techniques to validate correct input and detect incorrect input	3B9: Input Validation
B10	Be familiar with the features and capabilities of integrated development environments (IDEs)	3B10: Using IDEs
B11	Be familiar with the differences between low- and high-level programming languages	3B11,12,14: Programming Language Concepts
B12	Be familiar with different programming paradigms	3B11,12,14: Programming Language Concepts
B13	Know object-oriented programming concepts	3B13: Object-Oriented Programming Concepts
IV. Data

4A1 Understand bits as the universal medium for expressing digital information

4A2 Be familiar with concepts of data encryption and decryption

4A3 Know how to use computational tools, including spreadsheets, to analyze data in order to discover, explain, and visualize patterns, connections, and trends

4B1 Be familiar with the use of computing in simulation and modeling

4B2 Be familiar with methods to store, manage, and manipulate data

4B3 Be familiar with a variety of computational methods for data collection, aggregation, and generation

Module 4 - Data

4A1: Binary Digits

4A2: Encryption/Decryption

4A3: Computational Tools

V. Computing Systems and Networks

5A1 Know that operating systems are programs that control and coordinate interactions between hardware and software components

5A2 Be familiar with computing systems embedded in everyday objects (e.g., Internet of Things [IoT], ATMs, medical devices)

5A3 Know the capabilities, features, and uses of different types of computing systems (e.g., desktop, mobile, cluster)

5A4 Be familiar with computers as layers of abstraction from hardware (e.g., logic gates, chips) to software (e.g., system software, applications)

5A5 Be familiar with the steps required to execute a computer program (fetch-decode-execute cycles)

5A6 Be familiar with trade-offs between local, network, and cloud computing and storage

5A7 Be familiar with communication between devices

Module 5 - Computing Systems and Networks

5A1: Operating Systems/Hardware/Software

5A2: Embedded Systems and IoT

5A3: Computing Systems

5A4: Hardware/Software/Layers of Abstractions

5A5: Fetch/Decode/Execute Cycle

5A6: Computing and Storage Issues

5A7: Network Communication
WeTeach_CS - Foundations of Computer Science for Teachers - Praxis Prep
The University of Texas at Austin

<table>
<thead>
<tr>
<th>5B1</th>
<th>Know components of networks</th>
<th>5B1, 2, and 3: Network Components, Functionality, Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>5B2</td>
<td>Be familiar with factors that have an impact on network functionality</td>
<td>5B1, 2, and 3: Network Components, Functionality, Protocols</td>
</tr>
<tr>
<td>5B3</td>
<td>Be familiar with how Internet and Web protocols work</td>
<td>5B1, 2, and 3: Network Components, Functionality, Protocols</td>
</tr>
<tr>
<td>5B4</td>
<td>Be familiar with digital and physical strategies for maintaining security</td>
<td>5B4: Network Security Strategies</td>
</tr>
<tr>
<td>5B5</td>
<td>Be familiar with concepts of cybersecurity</td>
<td>5B5: Five Pillars of Cybersecurity</td>
</tr>
<tr>
<td>5B6</td>
<td>Be familiar with the components that make up the Web (e.g., HTTP, HTML, browsers, servers, clients)</td>
<td>5B6: WWW Components/Protocols</td>
</tr>
</tbody>
</table>